

The rules for multiplying real numbers are related to the properties of real numbers and the definitions o² operations.

(3)(5)	(3)(-5)	(-3)(5)	(-3)(-5)

KEY CONCEPT: MULTIPLYING REAL NUMBERS

The product of two real numbers with <u>different signs</u> is *negative*.

Examples: 2(-3) = -6 -2(3) = -6

The product of two real numbers with the <u>same sign</u> is *positive*.

Examp'es: 2(3) = 6 (-2)(-3) = 6

PROBLEM 1: MULTIPLYING REAL NUMBERS

What is each product?

a) 12(-8)	b). 24(0.5)	c). $-\frac{3}{4} \cdot \frac{1}{2}$	d). (-3) ²
e) 6(-15)	f). 12(0.2)	g). $\frac{7}{10}\left(-\frac{1}{2}\right)$	h). (-4)²

Notice that $(-3)^2$ in part (d) of Problem 1. Recall from Lesson 1-3 that *a* is a square root of *b* if $a^2=b$. So -3 is a square root of 9. A negative square root is represented by $-\sqrt{-3}$. Every positive real number has a positive and a negative square root. The symbol \pm in front of the radical indicates both square roots.

PROBLEM 2: SIMPLIFYING SQUARE ROOT EXPRESSIONS

What is the simplified form of each expression?

a) $-\sqrt{25}$ b). $\pm \sqrt{\frac{4}{49}}$ c). $\sqrt{81}$ d). $\sqrt{-16}$ e) $\sqrt{64}$ f). $\pm \sqrt{4}$ g). $-\sqrt{121}$ h). $\pm \sqrt{\frac{1}{36}}$

KEY CONCEPT: DIVIDING REAL NUMBERS

The quotient of two real numbers with <u>different signs</u> is *negative*.

Examples: $-20 \div 5 = -4$ $20 \div (-5) = -4$

The quotient of two real numbers with the same sign is positive.

Examples: $20 \div 5 = 4$ $-20 \div (-5) = 4$

PROBLEM 3: DIVIDING REAL NUMBERS

- a) A sky diver's elevation changes by -3600 ft in 4 min after the parachute opens. What is the average change in the sky diver's elevation each minute?
- b) You make five withdrawals of equal amounts from your bank account. The total amount you withdraw is \$520. What is the change in your account balance each time you make a withdrawal?

PROPERTY: INVERSE PROPERTY OF MULTIPLICATION

For every nonzero real number *a*, there is a <u>multiplicative inverse</u> $\frac{1}{a}$ such that $a\left(\frac{a}{a}\right)=1$

Example: The multiplicative inverse of -4 is $-\frac{1}{4}$ because $-4\left(-\frac{1}{4}\right) = 1$.

The <u>reciprocal</u> of a nonzero real number of the form $\frac{a}{b}$ is $\frac{b}{a}$. The product of a number and its reciprocal is 1, so the reciprocal of a number is its multiplicative inverse. This allows are rule for dividing fractions.

KEY CONCEPT: DIVIDING FRACTIONS

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

When dividing with fractions, rewrite the problem as the multiplication by the reciprocal of the denominator.

PROBLEM 4: DIVIDING FRACTIONS

Simplify.

a)
$$\frac{-\frac{3}{4}}{-\frac{2}{2}}$$
 b). $\frac{\frac{4}{5}}{-\frac{5}{2}}$ c). $-7 \div \frac{7}{3}$ d). $\frac{3}{8} \div 3$

e)
$$\frac{\frac{2}{3}}{-\frac{1}{4}}$$
 f). $20 \div \frac{1}{4}$ g). $\frac{2}{7} \div \left(-\frac{20}{21}\right)$